

Fusion Briefing

Ray Bair

Laboratory Computing Resource Center

October 29, 2009

Today's Topics

Details of the new LCRC cluster - Fusion

- Hardware configuration
- Software available and upgrades
- Benchmark results

Details pertaining to usage of Fusion

- What is different about Fusion
- Project allocations
- Connecting to Fusion
- Submitting jobs and getting help

Upcoming events

Laboratory Computing Resource Center Staff

- Ray Bair Chief Computational Scientist for CELS
- Shashi Aithal Computational Scientist
- John Valdes Sr. HPC Systems Administrator
- Jason Hedden HPC Systems Administration Specialist

Many benefits to Argonne research

- More compute power (~16 times as much)
- More memory (~25 times more RAM)
- Faster processors and interconnect
- Newer software versions
- Minimal change in the way users use LCRC

Compute Hardware Overview

- 320 compute nodes
 - Intel Nehalem series
 - dual-socket, quad-core 2.53 GHz
- 2560 compute processors (320 x 8) total
- 12.5 TB memory
 - 304 Regular Nodes: 36 GB each
 - 16 Fat Nodes: 96 GB each (in 2010; currently 64 GB)
- Peak performance = 25.9 Tflops (25.9 * 1012 floating point operations per second)
 - Linpack Benchmark = 21.5 Tflops
- High Speed Interconnect
 - InfiniBand QDR 4GB/s per link, per direction
- IBM iDataPlex 2 Nodes in 2U
 - 250 GB disk
 - Integrated Gigabit Ethernet

Designed for Performance

New SSE4.2 Instructions Improved Lock Support Additional Caching Hierarchy

Simultaneous Multi-Threading

Faster Virtualization Better Branch Prediction

Compute Hardware – Comparison with Jazz

	Fusion	Jazz	
Number of nodes	320	350	
Login Nodes	4	4	
Sys Mgt Nodes	4	8	
Cores/node (processors)	8 (dual quad-core)	1	
Chip	Intel® Xeon quad core Nehalem @ 2.53 GHz	Intel Pentium IV Xeon @ 2.4GHz	
Memory	12.5 TB 304 Regular Node: 36 GB 16 Fat Node: 96 GB/node	0.5 TB 175 Nodes 1GB 175 Nodes 2GB	
Local scratch disk/node	250 GB 80GB		

Network – Comparison with Jazz

	Fusion	Jazz
High Performance Interconnect	 InfiniBand QDR @ 4 GB/s per link, 2 µsec latency 	• Myrinet 2000 to all systems @ 0.25 GB/s, 6-8 µsec latency
Ethernet Infrastructure	Gigabit Ethernet to nodes (1000 gbps)10 GigE infrastructure to Lab	Fast Ethernet to nodes (100 gbps)1 GigE infrastructure to Lab

Parallel Home File System

General Parallel File System (GPFS)

- GPFS provides concurrent high-speed file access to applications executing on multiple nodes of clusters
- Your home directory is /home/<username>
- Available on all compute nodes
- 90 TB space
- Backed up nightly to CELS new tape library
- Higher performance and more robust shared file access than NFS.
- Other features such as high availability, disaster recovery etc.

Large Parallel Scratch File System

Parallel Virtual File System (PVFS2)

- Developed in MCS
- 320 TB of space
- High performance parallel access to large scratch storage
- MPI-IO (ROMIO) support over InfiniBand
- Mounted at /pvfs/scratch/<username>
- NOT backed up, data can be lost
- Cannot run executables from this space
- No symbolic link support

Software – Compiler versions

Package	Fusion (version)	Jazz (version)
Intel Compilers and MKL •C/C++/F77/F90	11.1	8.1
PGI Compilers •C/C++/F77/F90	9.0	5.2
Absoft Fortran compilers •F77/F90	10.2	9.0
NAG F95 Compiler	5.2	5.0
Gnu gcc	4.1	3.2
MPI	MPICH-2	MPICH-1

- Fusion default MPI is MPICH-2 over InfiniBand (MVAPICH-2)
- Always compile applications on Fusion
 - Never build binaries on another machine

Software – Commercial software

Package	Fusion (version)	Jazz (version)	
Red Hat Enterprise Linux	5.4	3.x	
Mathematica (serial)	7	5.0	
Matlab (serial)	R2009a	R13	
IDL	7.1	6.2	
NCAR Graphics	5.0	4.4.1	
STAR-CD	4.08	4.08	
GAUSSIAN/LINDA	G09	G03	
VASP	4.6.x	4.6.x	

Software – Profilers and Debuggers

TotalView (Version 8.6.2)

- Allows parallel debugging of MPI programs
- Has nice graphical user interface
- 32 process license (1 user with 32 processes, 2 users with 16 processes etc.)

Intel Debugger

- Trace analyzer and collector
- Intel Cluster Toolkit

GNU Debugger – GDB

JumpShot

- Developed in MCS
- Automates visualization of MPI calls

Allinea DDT (new)

- Advanced source code browser shows the state of the processes within a parallel job
- Simplifies the task of debugging large numbers of simultaneous processes
- Allows debugging problems with deadlock and memory leaks
- Fusion has a 32 process
 Allinea license (1 user with 32 processes, 2 users with 16 processes etc.)
- We are interested in your feedback on both TotalView and Allinea DDT

Benchmarks - NEK5000

MCS Computational Fluid Dynamics – spectral element solver

Total Cores (processors)	Cores/ Node	Nodes	Fusion (sec)	Jazz (sec)	Speed- up/Core
8	1	8	810	3819	4.7
8	8	1	1193	N/A	3.2
128	1	128	81.9	282	3.4
128	8	16	70.7	N/A	4.0

Benchmarks - Stream

Sustainable memory bandwidth test

	1 thread/node 8 threads/node MB/s (copy) MB/s (copy)	
Fusion	8,425	24,227
Jazz	1,193	1,171
Speed-up	7.1	20.7

- For memory intensive applications, up to 20x faster per node when using all 8 cores.
- Worst case is 2.5x faster (8 independent Jazz nodes vs. 8 cores on 1 Fusion node)

Benchmarks – Intel MPI Benchmark

Measures inter-node communications performance

	Ping Pong latency (2 nodes)	All reduce – 128 nodes (4MB packets)
Fusion	2.0 µsec	0.0107 sec
Jazz	8.7 µsec	0.116 sec
Speed-up	4.4	10.8

Access to Fusion

Startup Allocations (initial account request)

- ANL employees receive 8,000 core-hours (1,000 node hours)
- Provides resources for getting familiar with Fusion
- Go to https://accounts.lcrc.anl.gov/
 - Click: Account Request Page

Next step is to request a project (due Friday 11/6)

- Go to https://accounts.lcrc.anl.gov/
 - Click: Project Request Page requires an Argonne PI
- Big projects are 300,000 core-hours or larger

Friendly user period: November-December

- Limited pre-production access
- Spectrum of applications; large jobs
- Send email to support@lcrc.anl.gov

Connection to Fusion

Same approach on Fusion as on Jazz

Log in using SSH with Private/Public key authentication

Login nodes have 8 cores, 64 GB memory

- ssh to fusion.lcrc.anl.gov
- DNS round robin to flogin*.lcrc.anl.gov
- Normal UNIX shells (tcsh/bash)

Use login nodes for

- Code development
- Submit jobs, monitor jobs
- Run visualization apps e.g. Jumpshot, Totalview
- Debugging short jobs

Job submission

Torque/MAUI (Jazz used PBSPro)

- Handles scheduling, starting, stopping of jobs
- Commands are mostly the same
- Highly configurable by the user
 - Email notification when jobs finish
 - Interactive job submission
- Works with the account system (qbank) to track hours
- Some additional options for multicore machines (webpage will be updated with new instructions)

Job queues

Starting with familiar queues and policies

Tweaking to optimize research throughput, support HPC

Batch queue

- Default queue; intended for most work;
- Allocated and charged for all 8 cores/node
- Includes most cluster nodes (nominally 300)

Bigmem queue

- 16 96-GB nodes
- Supports jobs requiring a lot of shared memory

Shared queue

- 4 nodes always available; allocated/charged by individual cores
- Multiple users can run on these 4 nodes
- Useful for debugging

Getting help using LCRC

Check the LCRC web pages

- Using Jazz http://www.lcrc.anl.gov/jazz/Documentation/
- Fusion pages are under construction January rollout

Email support@lcrc.anl.gov for

- System problems (nodes down, scheduler, interconnect)
- Reservation requests
- Help compiling code and installing new software
- Job submission scripts (examples available on webpage)
- Performance improvement consultation

Upcoming Events

Events	Nov. 09	Dec. 09	Jan. 10
Friendly users			
Fusion project requests due	Nov. 6		
Transition from Jazz to Fusion	_		
Jazz shut down		Dec. 31	
Fusion production target			Jan.1
Introduction to Fusion and MPI			Jan. 21

Questions and Comments

2002 Supercomputer.

No rust. Free to
good home. Shipping
not included. Call
Ray at 2-5751.

